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Abstract. The elastic stability of a discotic liquid crystal in the theoretically predicted hexatic 
N + 6 phase against fluctuations of orientational order is tested. For this purpose, we derive 
the elastic stability conditions for Frank constants of a discotic liquid crystal, and find that 
the coupling constant y 3 ,  which couples the director distortions to local rotations of the 
hexagonal two-dimensional lattice, is forced to be weak with respect to the other Frank 
constants, in order to preserve the long-range sixfold orientational order. We then show that 
criticalenhancementsofFrankelasticconstants, in the hexaticN + 6phase near the supposed 
continuous transition to the hexagonal discotic phase, fulfil the elastic stability conditions 
previously derived. Critical fluctuations of orientational order, therefore, are not able either 
to decorrelate the hexatic phase or to drive the transition to first order. Such a fluctuation- 
induced first-order transition, on the contrary, is known to play a role in smectic liquid 
crystals. We conclude that the N + 6 phase remains orientationally correlated in the critical 
region, which proves the self-consistency of the model assuming such an intermediate phase, 
as yet experimentally undiscovered, between nematic and hexagonal discotic phases. 

1. Introduction 

In two previous papers [ l ,  21 we proposed a model for the hexagonal discotic-nematic 
phase transition. We considered, indeed, the phase transition between the hexagonal 
discotic phase and an intermediate hexatic phase ( N  + 6 phase) [ 1,3]. The hexatic phase 
is characterised by translational invariance in the plane orthogonal to the nematic 
director, so that it has homogeneous density like the ordinary nematic phase, but shows 
long-range sixfold orientational order around the director like the hexagonal discotic 
phase. Therefore, the symmetry group of the intermediate hexatic phase is D6h U R3. 
We assumed such an intermediate phase, because of some analogies with the two- 
dimensional melting theory of Halperin and Nelson [4], as discussed in [l]. Anyway, it 
is only a theoretical prediction and as yet experimentally undiscovered. 

There has been much recent theoretical interest in bond orientationally ordered 
phases [3, 5 ,  61 as intermediate phases between a more disordered phase and a phase 
that shows both orientational and translational order. Such new phases have been 
proposed in a wide class of systems, including Lifshitz point systems and various kinds of 
liquid crystals, which share some symmetry features despite different physical structures 
[6]. For most of these phases there is not yet experimental evidence, but they are, at 
least, possible on symmetry grounds and are of physical interest. They should be a 
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universal feature of ordered media, while the actual existence of a particular inter- 
mediate phase could depend on its stability against fluctuation-induced breaking of long- 
range orientational order. Stability against fluctuations, in its turn, is controlled by the 
effective values of some physical parameters. The aim of this paper is just to investigate 
the stability of the hexatic N + 6 phase with respect to the fluctuations of local orien- 
tational order. 

According to the aforementioned model [l], a triple mass-density wave in the plane 
orthogonal to the nematic director is the order parameter that describes the condensation 
of the hexagonal two-dimensional lattice. The requirement of local invariance under 
rotations [ l ,  51 yields the coupling between the order parameter and the local rotation 
field a, which is defined in equation (24) of [ l ]  as 

= Q , m o  + ( m o  x Sm) (1) 
where Q, describes the local rotation of the two-dimensional lattice around mo, which 
is the unperturbed director (conventionally taken along the i axis), while Sm is a small 
distortion of mo. The field locally fixes the orientation of hexagonal phase with respect 
to the uniform configuration (Q, = 0, Sm = 0). 

Such a model [l] was developed in analogy with the nematic-smectic A transition, 
described as the onset of aplane density wave with wavevector along the nematicdirector 
[7]. In a smectic liquid crystal, the orientational order is fully characterised by the 
director m. In a discotic liquid crystal, on the contrary, the director m is not sufficient to 
describe the full orientational order of the phase. We must define also a bond-angle field 
Q z ,  which gives the orientation of the two-dimensional lattice in the plane orthogonal 
to mo. Such Q, can be defined as the rotation angle around mo between a given reciprocal 
lattice vector and a fixed k? axis. 

As for smectics [7], free energy must be invariant under global rotations of the 
system, in this case under simultaneous rotations of the liquid columns and of the 
director. Anyway, for discotics, the director m is not sufficient to fix orientational order, 
so that we are forced to introduce the full rotation field a, equation (1). Therefore, the 
requirement of global rotation invariance must be referred to a, as discussed in [l]. 
Also, the fluctuations of orientational order and elastic energy due to distortions of 
orientational order must be expressed in terms of the strains of the field 0 [2]. The full 
elastic energy of curvature for a discotic liquid crystal is therefore due to local variations 
of the three independent rotation fields Sm,, amy, Q z ,  which are the components of 
a, equation (1). Such a Frank elastic energy controls the fluctuations of the three 
independent fields a. 

As a consequence of the coupling between the order parameter and a, the critical 
fluctuations of the order parameter drive the critical enhancements of the Frank elastic 
constants, which can be calculated by means of the response-function method [8]. In 
smectics, a similar coupling between the order parameter and the director yields critical 
enhancement of Frank elastic constants [8]. 

The above-mentioned mechanism for the melting of the hexagonal discotic phase 
into the nematic phase via an intermediate hexatic N + 6 phase is a physically motivated 
conjecture [l]. Nevertheless, the actual existence and the range of stability of such an 
intermediate phase depend on the effects of thermal fluctuations. The local fluctuations 
of orientational order could yield an elastic instability in the N + 6 phase near the second- 
order transition to the hexagonal discotic phase. In that case the fixed point describing 
the second-order transition would be unstable against fluctuations of orientational order 
and the system would undergo a cross-over to a first-order transition. 
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The question is whether a second-order transition is possible between a phase with 
D6h symmetry and no translational order and a columnar phase with translational order 
in addition to Dbh symmetry, or whether fluctuations imply that such a transition is 
always first-order. As another possibility, the range of stability of the hexatic phase in 
the absence of effects due to fluctuations could be so narrow that instability driven by 
fluctuations would completely destroy long-range orientational order, so yielding a 
cross-over to a direct first-order transition between hexagonal discotic phase and nematic 
phase. All these possibilities, at last, could be realised in different ranges of values of 
physical parameters. 

Fluctuations are known to have the above-mentioned effects, and the phenomenon 
of fluctuation-induced first-order phase transitions is well understood [9-141. In particu- 
lar, as regards the nematic-smectic A transition [ 12-14], the first-order transition is 
induced by the fluctuations of the director, which can be considered as a massless gauge 
field coupled to the smectic order parameter. 

Since our model 111 is closely related to the De Gennes model [7] of the nematic- 
smectic A transition, we briefly review the theoretical insights into this transition. In 
mean-field theory, which neglects director fluctuations, this transition is continuous [7]. 
Director fluctuations can drive the transition to first order [ 12-14], but for some range 
of values of parameters the transition remains second order [ 15-17] even when all 
fluctuations are accounted for. 

The elastic instability mechanism, which we take into account in this paper as a 
possible source either of a fluctuation-induced first-order transition or of a complete 
decorrelation of the hexatic phase, is somewhat different from that which makes the 
nematic-smectic A transition first-order. We consider that, as for smectics, the coupling 
between the order parameter and the ‘gauge’ field yields the critical enhancements of 
the Frank elastic constants as a consequence of the critical fluctuations of the order 
parameter near the second-order phase transition point. Such a critical behaviour of 
Frank constants might make the system unstable with respect to the fluctuations of a, 
i.e. of orientational order. In renormalisation-group jargon, the fixed point controlling 
the transition would be unstable because some Frank constants could not reach stable 
values in parameter space. 

The aim of this paper is to study the elastic stability of the hexatic phase, in particular 
near the supposed second-order transition to the hexagonal discotic phase, where the 
fluctuation effects are relevant. The main result of our analysis is that the instability 
described above does not develop, since critical enhancements of Frank constants still 
fulfil elastic stability conditions. Therefore, the hexatic phase is stable, at least in the 
theoretical framework of the model assumed. 

We shall derive an inequality that the Frank elastic constants must fulfil, so that the 
elastic stability of discotic liquid crystals is preserved. Elastic stability is essential for the 
existence of discotic phases. The Frank elastic energy describes the stiffness of the system 
with respect to local distortions of orientational order. If the Frank energy does not fulfil 
the requirement of elastic stability, the system is not stable against breaking of the long- 
range orientational order by thermal fluctuations of a. In that case the fluctuations of 

should make the system isotropic. No liquid-crystalline mesophase could be stable. 
In particular, the coupling between 6m and Q, (see section 2) cannot be too strong, 

otherwise the system develops an unstable mode consisting of a mixing of twist and bend 
of the liquid tubes coupled to torsion of the two-dimensional lattice. As a consequence, 
the two-dimensional lattice is decorrelated over a macroscopic length scale. Therefore, 
preservation of sixfold symmetry requires weak coupling between the director distortion 
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6m and the local rotation angle Q, of the two-dimensional lattice around the axis of 
liquid tubes. 

Critical enhancements of the Frank elastic constants, calculated by means of the 
response-function method [8], fulfil the previously mentioned condition of elastic stab- 
ility. So, critical behaviour in the hexaticN + 6phase, near the temperature of the phase 
transition to the hexagonal discotic phase, shows that the more disordered phase remains 
orientationally correlated in the critical region. Such a result can be considered as a self- 
consistency test of the model, in particular as regards the assumption of the intermediate 
N + 6 phase. In spite of self-consistency, nevertheless, we cannot rule out different 
mechanisms for the hexagonal discotic to nematic phase transition, where the breaking 
of translational order is directly driven by the decorrelation of orientational order. Such 
a remark is valid in two-dimensional melting [4] as well. 

The Frank elastic constant y3, which couples 6m to Q,, shows critical enhancement. 
In this regard, the statement in [2] that y3 is non-critical must be considered wrong. As 
a consequence, the director elastic modes 6m remain coupled to the 'rotation' elastic 
modes Q,, near the transition temperature too. Incidentally, such a feature makes a 
renormalisation-group treatment of the transition harder, because the coupling between 
6m and 52, cannot be neglected. In fact the normal elastic modes are a mixing of 6m 
and Q,, and the corresponding inverse propagators are not simply quadratic in the 
wavevector (see also [3]). 

In section 2 the elastic stability conditions are derived and, in particular, the 
inequality that involves the 6m-Q, coupling constant y3. In section 3 the critical enhance- 
ments of Frank elastic constants are calculated, and it is shown that they fulfil the elastic 
stability conditions. Finally, in the appendix, some calculational details are presented. 

2. Elastic stability 

The full elastic energy associated with the strains of the local rotation field clz, equation 
(l), for a discotic liquid crystal is [2] 

F D  = 4 d3r[Kl(div + K2(mp rot + K3(m0 X rot + Y I ( V I ~ Q , ) ~  

+ Y 2 ( v - u 2  + 2 Y 3 h  * rot ~"Vlp,)l  (2) 

where a different (by a factor 2) definition of y3, with respect to [2], is adopted for 
convenience. The y4 term present in equation (2) of [2] isomitted, since it is not invariant 
under reflections in planes passing through the f axis. Therefore, by the chiral symmetry 
contained in the Dbh group, we have y4 = 0. Note that the hexagonal symmetry of the 
discotic phase entirely determines the elastic energy (2) and, in particular, implies 
cylindrical symmetry for elastic energy (see also [3]). 

In Fourier space, elastic energy (2) is 
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Let us define the strain vector n, the components of which are n, = 6mx, ny = 6my, 
no = Q,. The elastic energy (3), in terms of the strain n, can be written as 

with a, p = x ,  y ,  0. In equation (4 ) ,  Qmp is the response function [8] relative to curvature 
distortions n. The components of Pap, by comparing (4)  with (3), are 

Qox = Qxo = - ~ 3 q z q y  (5e)  

Qoy Q ~ o  = ~ 3 q z q x .  (5 f l  
Elastic stability requires that the quadratic form Qupn,n$ in (4) is positive definite. 

In that case any distortion n yields an energy increase, so that the uniform configuration 
n = 0 is stable. Therefore, the coefficients Qap of the quadratic form in (4 )  must fulfil 
the well known inequalities 

which make Qlugn,ng* positive definite. 
Substituting ( 5 )  in (6 ) ,  one can see immediately that equations (6a) are valid for 

K ,  > O  K2 > 0 K3 > O  Y1 '0 Y2 > o  (7) 
i.e. the Frank elastic constants K,, K2 and K3,  relative to 6m distortions, and the 
rotational stiffnesses y1 and y2 ,  relative to Q, distortions, must be positive. Inequality 
(6b) can be put in the form 

(K3qz + K1q:)(K3qz + K2q:) > 
(with q: = q; + q:), which is always fulfilled by (7). 

Finally, the inequality (6c) is equivalent to 

( K 3 d  + Klq:)[(Ylqz  + Y2q:)(K3qz + K2q:) - Yk&:I > o  

Y1 K3q2 + Y2K2441 + ( Y l K 2  + Y 2 K 3  - Y:)q;q: > O* 

or, by (71, to 

(8) 
Such an inequality involves a quadratic form in qa and 4% variables, which has to be 
positive definite. Generally, equation (8) holds good for ~ 1 K 3  > 0, y2K2 > 0 ,  which are 
fulfilled by (7), and for 

4ylKZY2K3 - (YlKZ + Y z K 3  - Y : l 2  > 0 
or 
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y i  - 2?’3(YIK2 + Y 2 K 3 )  + ( Y l K 2  - Y 2 K 3 ) 2  < O. (9) 

But (9) is too restrictive, because in its derivation qf and q: variables of quadratic form 
(8) are assumed to take either positive or negative values, while they can be only positive. 
For positive values of qf and 4: variables and by ( 7 ) ,  the quadratic form (8) is positive 
whenever 

Y l K 2  + Y Z K 3  > yf 

[(Y1K2)l12 - (YzK3)1’212 < Y f  < [ ( Y I K ~ ) ~ ’ ~  + (Y2K3)”212- 

(10) 

independently of (9). By solving (9) with respect to y3 we get the inequality 

(11) 

Therefore, (8) is fulfilled if y 3  is in accordance with inequality (10) or, inclusively, with 
inequality (11). Putting together these two inequalities, one gets 

Y’3 < [(Y1K2)1/2 + (Y2K3)lI2I2 

or 

Inequalities ( 7 )  and (12) are the conditions of elastic stability. In particular, (12) 
means that the modulus of the coupling constant y3 ,  i.e. the strength of the coupling 
between 6m and Q,, cannot be too large with respect to the other Frank elastic constants. 
The sign of y3 can be either positive or negative. The unstable mode, which develops if 
y3 does not fulfil inequality (12) ,  is a mixing of the twist and bend modes of the director 
with the torsion mode of the two-dimensional lattice, since y3 couples m, rot 6m to 
VI,S2,, as shown in equation (2) .  In fact mo * rot 6m # 0 implies that 6m and then liquid 
tubes are twisted, while VliS2, # 0 represents a rotation angle Q, that is non-uniform 
along the 2 axis and then a torsion of the two-dimensional lattice. Indeed, the normal 
elastic modes, which can be obtained from the quadratic form (3), contain a bend 
component too, in addition to twist and torsion modes. 

3. Critical enhancements of Frank elastic constants 

In this section we closely follow [l, 21, and thus we only outline the general lines of the 
derivation. We exploit the response-function method [8] in order to calculate enhance- 
ments of Frank constants, in the hexatic N + 6 phase, just above the phase transition 
temperature to the hexagonal discotic phase. Such a method was first applied by Jahnig 
and Brochard to evaluate critical enhancements of Frank constants in smectics [8], 
described by the De  Gennes model [7].  Our model [ l ]  is analogous with the De Gennes 
model and the only differences are the following: the order parameter is a triple density 
wave while the smectic order parameter is a plane density wave; the ‘gauge’ field is a, 
equation ( 1 ) ,  while for smectics 6m is sufficient to express the global rotational invariance 
of the system. Some consequences follow on the form of gauge coupling between order 
parameter and gauge field [ 11, and therefore on the critical behaviour of Frank constants 
[I, 21. 
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The gradient terms of the order parameter in the free energy, locally invariant under 
rotations, are given by 

I *  3 

as in equation (28) of [l]. The order parameter is represented by the three complex 
amplitudes q i  (with i = 1 , 2 , 3 )  of the triple mass-density wave 

6PW = Re[vl(r)exP(iql - 4  + v2(r)exp(iq2 + r3(r)exp(iq3 ..)I 
where {qi} is a set of shortest reciprocal lattice vectors (defined in equations (3)-(6) of 
[l]) characteristic of the planar hexagonal lattice orthogonal to the nematic director. 
Such an order parameter describes the condensation of the planar hexagonal lattice 
from the homogeneous hexatic phase, as the De Gennes order parameter [7] (only one 
complex amplitude) describes the condensation of smectic layers from the nematic 
phase. 

The increment of free energy due to a small external distortion n can be written as 

6 F  = - d3r  h(r) n(r) (14) J 
where h(r) is the response of the system to the external perturbation n(r). The response 
function [8] Qffp is defined by 

ha = Qffpnp. (15) 
The hydrodynamic contribution to Q ,  comes from the variation of elastic energy, 
equation (4), and is given by equations (53, in Fourier space. The fluctuating contribution 
to equation (15) comes from the variation of F2, equation (13) ,  and can be calculated by 
statistical averaging over thermal fluctuations of the order parameter. 

In Fourier-transformed variables, the fluctuating response function is given by the 
thermal average 

where the components of h(q) are 

with j = x ,  y .  
In Gaussian approximation [ 1 , 8 ]  , the response function Qap is 
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where A = A ' ( T  - T * ) ,  T *  being a second-order phase transition temperature, and 
511 = (2AM11)- l /~ ,  EL = (2AMJ112 are the correlation lengths parallel and orthogonal, 
respectively, to the director mo. Carrying out the sum over i in equations (18), one gets 

where qo is the modulus of the vectors qi and &,k is the antisymmetric unit tensor in two 
dimensions. 

In the hydrodynamic limit [ l ,  81 gq -=s 1, the integrations in equations (21) give 

Comparing equations (22) with equations ( 5 ) ,  we obtain the critical contributions to the 
Frank constants 

6K3 = O  



Elastic stability f o r  a discotic liquid crystal 3069 

= -6K2.  q 8 k B T  a y ,  = - - 16n  

For T+ T * ,  611 and EL diverge, so that the critical contributions (23) to Frank 
constants become larger than the background values. Therefore, the elastic stability 
condition (12)  for T+ T* becomes 

1PY3I2 < 6Y16K2. (24) 

(ay3)*  = ( S K 2 ) 2  < 2(6K2)2 = 6y16K2. 

The critical enhancements (23)  fulfil inequality (24) , since 

Note that the critical contribution to the response function QNB, equations (21 ) ,  fulfils 
elastic stability conditions ( 6 ) ,  even if one does not perform the hydrodynamic limit of 
equations (21).  Let us define, for convenience, the rescaled wavevector 

411 = E114r 41 = E141 
and the rescaled components of response function 

c E 6 q i k ~ T ( g l / E : ) - ~ .  

It can be shown (see the appendix) that 

with a, /3 = x ,  y ,  2, which corresponds to the transverse response function of a smectic 
liquid crystal [8]. Therefore, equations (26) take the form 

In the hydrodynamic limit f ( 4 ) / Q 2  -- const, and we get equations (22) .  As shown in 
the appendix, the functionf(4) is positive. It is straightforward to show that the response 
function in equations (29)  fulfils the elastic stability conditions ( 6 ) ,  sincef(4) > 0. 

In conclusion, we have tested the stability of the hexatic N + 6 phase, a theoretically 
predicted intermediate phase between the hexagonal discotic and nematic phases [ 11, 
against fluctuations of orientational order, which could decorrelate the phase. We have 
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taken account of a possible development of Frank elastic instability due to critical 
behaviour of Frank constants in the N + 6 phase near the supposed continuous transition 
to the hexagonal discotic phase. As possible consequences of such an instability, the 
transition could be driven to first order or the range of stability of the hexatic phase could 
vanish. 

Such fluctuation effects are well known in various systems [9-141. In particular, as 
regards the De  Gennes model [7] of smectics, with which our model shows several 
analogies, director fluctuations can drive the nematic-smectic A transition to first order 

As the main result of our calculations, critical behaviour of Frank constants shows 
that, even though the coupling constant y 3  undergoes critical enhancement, elastic 
stability conditions are still fulfilled for the N + 6 phase in the critical region. Therefore, 
the sixfold orientational order is actually preserved at the continuous transition between 
hexatic and hexagonal discotic phases. We can conclude that, in the theoretical frame- 
work of our model, the hexatic phase is stable against fluctuations of orientational order. 
As in two-dimensional melting [4], nevertheless, we cannot rule out other mechanisms, 
e.g. driven by disclination unbinding [4], for a direct first-order transition between 
hexagonal discotic and nematic phases. We only state that our model [ l ,  21 is stable and 
self-consistent. 

[ 12-14]. 
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Appendix 

In this appendix, we derive equation (28) and show that f(4) > 0. Generally, such a 
quantity as that on the left-hand side of equation (28) can depend only on the tensors 
6, and 4&/Q2. Therefore, we put 

= f(4) (6,p - 4,4p/B2) + d 4 ) 4 n 4 p / 4 2  (Al l  
wheref(4) and g(4) are the transverse and longitudinal parts, respectively. In order to 
get g(4), we contract equation (Al)  with @: 

Let us calculate 

since GCp), equation (20), is isotropic in rescaled wavevector (25). By a partial inte- 
gration on pr ,  one has 

and then 
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(A31 

Moreover, by equations (20) and (25 ) ,  we have the equality 

4 . p  = h[G-'(p + 4/2) - G-'(p - 4/2)] 

and then 

and analogously for the other part of the integral in equation (A4), we find 

Finally, equations (A3) and (A5) yield 

and then, by equation (A2), 

4 w d 4 )  = 0 (Ab) 
i.e. the longitudinal part in equation (Al) vanishes. Therefore, equation (Al) becomes 

-1m d3P3 PwPB[G(P - 4/2)G03 + 6/21 - G2(P)1 =f(4)(d, - 4LY4a/Q2) (-47) 

which is the same as equation (28). 
At last, we will show thatf(4) > 0. Taking the trace of equation (A7), we have 

while the trace of equation (A3) yields 

Moreover, we use the following relation 

P2 d3p 1 

1 I $$ [l + (p + 4/2)2] [l + (p - 4/2)2] 
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which can easily be verified. Substituting equations (A9) and (A10) in equation (A8), 
we get 

which is always positive, since the expressions in the integrals are positive. 
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